Full Content is available to subscribers

Subscribe/Learn More  >

Assessment of Partial-Admission Characteristics in Twin-Entry Turbine Pulse Performance Modelling

[+] Author Affiliations
Meng Soon Chiong, Srithar Rajoo

Universiti Teknologi Malaysia, Johor, Malaysia

Alessandro Romagnoli

Nanyang Technological University, Singapore

Aaron W. Costall, Ricardo F. Martinez-Botas

Imperial College London, London, UK

Paper No. GT2015-42687, pp. V02CT42A022; 17 pages
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 2C: Turbomachinery
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5665-9
  • Copyright © 2015 by ASME


One-dimensional modelling of a twin-entry turbine usually considers only the full-admission characteristic in their analysis. However, due to out-of-phase exhaust flow, the actual operating environment is constantly under the intermittent combination of full, unequal and partial-admission conditions. This leads to unsatisfactory on-engine performance prediction, even though some present models have already accounted the finite twin-entry volute and interaction between the volute entries. This paper explores the potential improvement in twin-entry pulse flow model by including the partial-admission characteristics through the established one-dimensional model domain. The predicted results are validated against the experimental data obtained from the Imperial College pulse-flow testing facility. In addition, influences of the quality of partial-admission performance map are also analysed. The mathematical prediction methodology, which was revised from literature works, derived the twin-entry turbine partial-admission characteristics from the known full-admission performance. This study is intended to outline the importance of twin-entry turbine partial-admission characteristics in pulse performance modelling. In comparison to the literature findings, current model has satisfactorily resolved the twin-entry out-of-phase pulse flow performance, particularly the instantaneous actual power. The model prediction shows a twin-entry turbine unsteady swallowing capacity is mostly encapsulated within the quasi-steady full and partial-admission characteristic lines. On the other hand, the unsteady actual power hysteresis curve is found beyond quasi-steady characteristic lines at most instant throughout the pulse cycle.

Copyright © 2015 by ASME
Topics: Modeling , Turbines



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In