Full Content is available to subscribers

Subscribe/Learn More  >

High Speed Curving Performance of Rail Vehicles

[+] Author Affiliations
Brian Marquis, Robert Greif

Volpe National Transportation Systems Center, Cambridge, MA

Paper No. JRC2015-5620, pp. V001T10A001; 6 pages
  • 2015 Joint Rail Conference
  • 2015 Joint Rail Conference
  • San Jose, California, USA, March 23–26, 2015
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-5645-1


On March 13, 2013, the Federal Railroad Administration (FRA) published a final rule titled “Vehicle/Track Interaction Safety Standards; High-Speed and High Cant Deficiency Operations” which amended the Track Safety Standards (49 CFR Part213) and the Passenger Equipment Safety Standards (49 CFR Part 238) in order to promote VTI safety under a variety of conditions at speeds up to 220 mph [1]. Among its main accomplishments, the final rule facilitates the expansion of higher speed passenger rail by revising the standards governing permissible operating speed in curves, allowing for higher cant deficiencies in all FRA Track Classes. To ensure safety is not diminished, the FRA Track Safety Standards require railroads to maintain their tracks to stricter track geometry standards whenever they operate at these higher curving speeds and cant deficiencies. These revisions were based on studies that examined the dynamic curving performance of various representative rail vehicles.

This research investigates the steady-state curving performance of truck designs while traversing curves at various curving speeds and cant deficiencies. During steady-state curve negotiation, the axles of trucks generally offset laterally from the track centerline and develop angles of attack increasing the wheel-rail contact forces. Large lateral forces can develop, particularly in flange contact, resulting in increased wheel and rail wear, track panel shift, and the risk of derailment. Depending on the truck design, such forces become larger at higher cant deficiency. An understanding of the steady-state response of a rail vehicle in a curve is essential as it represents a significant part of the total dynamic response.

The curving performance of an idealized rigid truck is analyzed using nonlinear analytical methods for a wide range of operating speeds and unbalance conditions. Emphasis is placed on higher speed curving and the results are used to interpret trends observed during recent field testing with Amtrak’s Acela High-Speed Trainset on the Northeast Corridor.

Topics: Rail vehicles



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In