0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Analysis of an Energy Storage System for a Battery Electric Switcher Locomotive

[+] Author Affiliations
James A. Kreibick, Marc Serra Bosch, Timothy P. Cleary

Pennsylvania State University, University Park, PA

Brent Ballew

Norfolk Southern Corporation, Roanoke, VA

Paper No. JRC2015-5762, pp. V001T07A006; 7 pages
doi:10.1115/JRC2015-5762
From:
  • 2015 Joint Rail Conference
  • 2015 Joint Rail Conference
  • San Jose, California, USA, March 23–26, 2015
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-5645-1
  • Copyright © 2015 by ASME

abstract

Often, available power from an in-vehicle energy storage system is governed by thermal limitations. Modeling of battery pack thermal response is crucial to managing its cooling system energy consumption and estimating available charge/discharge power for future locomotive tractive and regenerative effort. Active cooling through forced air flow was simulated using computer-aided design of the battery pack and its enclosure. Module scaled (series string of 54 12V batteries) testing and modeling of both air flow and temperature distribution was performed and validated for sealed lead acid carbon batteries. A controller area network and data logger collected temperature data from 218 sensors placed throughout a battery pack module during electrical loading for both switcher and over-the-road cycles while under various environmental thermal loadings. A blower on-off control algorithm was optimized to minimize energy consumption and implemented based on temperature array statistics.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In