Full Content is available to subscribers

Subscribe/Learn More  >

Rail Tank Car Total Containment Fire Testing: Planning and Test Development

[+] Author Affiliations
Francisco Gonzalez, III

Federal Railroad Administration, Washington, DC

Anand Prabhakaran, Andrew Robitaille, Graydon Booth

Sharma & Associates, Inc., Countryside, IL

A. M. Birk

ThermDyne Technologies, Ltd., Kingston, ON, Canada

Frank Otremba

BAM (Bundesanstalt für Materialforschung und -prüfung), Berlin, Germany

Paper No. JRC2015-5764, pp. V001T06A016; 6 pages
  • 2015 Joint Rail Conference
  • 2015 Joint Rail Conference
  • San Jose, California, USA, March 23–26, 2015
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-5645-1
  • Copyright © 2015 by ASME


Given the frequent incidences of Non-Accident Releases (NARs) of hazardous materials from tank cars, there in an increasing interest in transporting hazardous materials in total containment conditions (i.e., no pressure relief devices). However, the ability of tank cars to meet thermal protection requirements provided in the Code of Federal Regulations under conditions of total containment has not been established. Also, the modeling tool commonly used by industry to evaluate thermal protection, AFFTAC, has not been validated under these conditions. The intent of this effort was to evaluate through a series of third-scale fire tests, the ability of tank cars to meet the thermal protection requirements under total containment conditions, and also, to validate AFFTAC for such conditions.

This paper describes the test design and planning effort associated with this research, including the design and evaluation of a fire test setup to simulate a credible, fully engulfing, pool fire that is consistent and repeatable, and the design and hydro-static testing of a third-scale tank specimen. The fire design includes controls on the spatial distribution and temperature variation of the flame temperature, the heat flux, and the radiative balance, to best reflect large liquid hydrocarbon pool fire conditions that may be experienced during derailment scenarios.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In