0

Full Content is available to subscribers

Subscribe/Learn More  >

Rail Temperature Approximation and Heat Slow Order Best Practices

[+] Author Affiliations
Radim Bruzek

ENSCO Inc., Springfield, VA

Michael Trosino

National Railroad Passenger Corporation (Amtrak), Philadelphia, PA

Leopold Kreisel

CSX Transportation, Jacksonville, FL

Leith Al-Nazer

Federal Railroad Administration, Washington, DC

Paper No. JRC2015-5720, pp. V001T04A002; 9 pages
doi:10.1115/JRC2015-5720
From:
  • 2015 Joint Rail Conference
  • 2015 Joint Rail Conference
  • San Jose, California, USA, March 23–26, 2015
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-5645-1
  • Copyright © 2015 by ASME

abstract

The railroad industry uses slow orders, sometimes referred to as speed restrictions, in areas where an elevated rail temperature is expected in order to minimize the risk and consequence of derailment caused by track buckling due to excessive rail temperature. Traditionally, rail temperature has been approximated by adding a constant offset, most often 30°F, to a peak ambient air temperature. When this approximated maximum rail temperature exceeds a given risk threshold, slow orders are usually issued for a predefined period of the day.

This “one size fits all” approach, however, is not effective and suitable in all situations. On very warm days, the difference between rail temperature and ambient air temperature can exceed railroad-employed offsets and remain elevated for extended periods of time. A given temperature offset may be well suited for certain regions and track buckling risk-related rail temperature thresholds but less accurate for others. Almost 160,000 hours of rail temperature measurements collected in 2012 across the eastern United States by two Class I railroads and predicted ambient air temperatures based on the National Weather Service’s National Centers for Environmental Prediction (NCEP) data were analyzed using detection theory in order to establish optimal values of offsets between air and rail temperatures as well as times when slow orders should be in place based on geographical location and the track buckling risk rail temperature threshold. This paper presents the results of the analysis and describes an improved procedure to manage heat-related slow orders based on ambient air temperatures.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In