Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of the Influence of the Supporting Mechanism of a Self-Energizing Hydraulic Brake on Torque Oscillations

[+] Author Affiliations
Matthias Hirtz, Hubertus Murrenhoff

RWTH Aachen University, Aachen, Germany

Julian Ewald

Bosch Rexroth AG, Lohr am Main, Germany

Paper No. JRC2015-5742, pp. V001T02A008; 7 pages
  • 2015 Joint Rail Conference
  • 2015 Joint Rail Conference
  • San Jose, California, USA, March 23–26, 2015
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-5645-1
  • Copyright © 2015 by ASME


Friction force oscillations caused by changes in the properties of the contact zone between brake disc and pad are well known from various applications. Resulting effects like brake judder are known phenomena in brake technologies and in the scope of various scientific work. A new potential measure to reduce brake torque oscillations is the active compensation with the use of the control system of a self-energizing hydraulic brake (SEHB).

The SEHB for railway application developed at the Institute for Fluid Power Drives and Controls (IFAS) of RWTH Aachen University offers high dynamic properties with its capability to reduce brake torque oscillations actively. New — in comparison to other braking systems — is the fact that the brake torque is measured by sensing the pressure in an additional supporting cylinder. Within this paper the influence of the hydraulic-mechanical system of the supporting cylinder on the oscillation properties of the SEHB is analyzed. The experimental investigation is conducted using a full scale brake test for railway applications. The brake disc is driven by hydraulic motors in secondary control mode. Measurement results will be used to define requirements of a superimposed dynamic pressure control to minimize brake torque oscillations. Future work will be experimental investigation of the influence of the self-energizing effect and the development of measures to compensate brake torque oscillations actively with the hydraulic actuator of the SEHB.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In