Full Content is available to subscribers

Subscribe/Learn More  >

Long-Term End-Slip Measurements and Corresponding Transfer Lengths in Pretensioned Concrete Railroad Ties Fabricated With 15 Different Reinforcements

[+] Author Affiliations
Robert J. Peterman, Naga Narendra B. Bodapati, B. Terry Beck, Chih-Hang John Wu

Kansas State University, Manhattan, KS

Paper No. JRC2015-5678, pp. V001T01A014; 7 pages
  • 2015 Joint Rail Conference
  • 2015 Joint Rail Conference
  • San Jose, California, USA, March 23–26, 2015
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-5645-1
  • Copyright © 2015 by ASME


Fifteen different reinforcements that are widely employed in manufacturing of railroad ties worldwide were selected for the study presented in this paper. Selected reinforcements include; 12 number of 5.32 mm diameter wires, two 3/8-inch diameter 7 wire strands, and one 5/16-inch diameter 3 wire strand. Twelve wire reinforcements are differed by surface indent geometries with one wire being smooth surfaced profile. Strand reinforcements consisted one smooth and one indented 7 wire strand, and one smooth 3 wire strand.

All reinforcements were stored in low-humidity environment to avoid rust. Later, pre-tensioned concrete railroad ties were fabricated at a tie manufacturing plant with the selected 15 different reinforcements in January 2013. Same concrete mix proportions were used during the fabrication of the ties with these 15 reinforcement types. Reinforcement end-slips were measured for each concrete tie at every reinforcement location during August 2014 (after one and half years). Simultaneously, transfer length measurements were measured on all these ties through surface strain measurements.

Detailed analysis of the measured end-slips for the ties fabricated with 15 reinforcements is presented. This analysis includes the variation of end-slip measurements at different locations in the cross-section. Variation in end-slip measurements for different types of reinforcements is also discussed. Transfer lengths are compared with end slip measurements and an equation to predict transfer lengths from long term end-slip values is presented.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In