Cooling Air Flow Characteristics in Gas Turbine Components FREE

[+] Author Affiliations
H. F. Jen, J. B. Sobanik

Avco Lycoming Division, Stratford, CT

Paper No. 81-GT-76, pp. V003T09A004; 8 pages
  • ASME 1981 International Gas Turbine Conference and Products Show
  • Volume 3: Heat Transfer; Electric Power
  • Houston, Texas, USA, March 9–12, 1981
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7963-4
  • Copyright © 1981 by ASME


An analytical model for the prediction of cooling air flow characteristics (mass flow rate and internal pressure distribution) in gas turbine components is discussed. The model addresses a number of basic flow elements typical to gas turbine components such as orifices, frictional passages, labyrinth seals, etc. Static bench test measurements of the flow characteristics were in good agreement with the analysis. For the turbine blade, the concept of equivalent pressure ratio is introduced and shown to be useful for predicting (1) the cooling air flow rate through the rotor blade at engine conditions from the static rig and (2) cooling air leakage rate at the rotor serration at engine conditions. This method shows excellent agreement with a detailed analytical model at various rotor speeds. A flow calibration procedure preserving flow similarity for blades and rotor assemblies is recommended.

Copyright © 1981 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In