Optimal Design of Squeeze Film Supports for Flexible Rotors PUBLIC ACCESS

[+] Author Affiliations
M. D. Rabinowitz

SCITEC Corporation, Sydney, NSW, Australia

E. J. Hahn

University of New South Wales, Kensington, Australia

Paper No. 82-GT-232, pp. V005T13A009; 9 pages
  • ASME 1982 International Gas Turbine Conference and Exhibit
  • Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; Process Industries; Technology Resources; General
  • London, England, April 18–22, 1982
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7960-3
  • Copyright © 1982 by ASME


Assuming central preloading operation below the second bending critical speed and full film lubrication, this paper presents a theoretical model which allows one, with minimum computation, to design squeeze film damped rotors under conditions of high unbalance loading. Closed form expressions are derived for the maximum vibration amplitudes pertaining to optimally damped conditions. The resulting vibration amplitude and transmissibility data of design interest are presented for a wide range of practical operating conditions on a single chart. It can be seen that for a given rotor, the lighter the bearing the more easily one can satisfy design constraints relating to allowable rotor vibration levels and lubricant supply pressure requirements. The data presented are shown to be applicable to a wide variety of rotors, and a recommended procedure for optimal design is outlined.

Copyright © 1982 by ASME
Topics: Design , Rotors
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In