Influence of Endwall Flow on Airfoil Suction Surface Mid-Height Boundary Layer Development in a Turbine Cascade PUBLIC ACCESS

[+] Author Affiliations
O. P. Sharma, R. A. Graziani

Pratt & Whitney Aircraft, East Hartford, CT

Paper No. 82-GT-127, pp. V001T01A053; 12 pages
  • ASME 1982 International Gas Turbine Conference and Exhibit
  • Volume 1: Turbomachinery
  • London, England, April 18–22, 1982
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7956-6
  • Copyright © 1982 by ASME


This paper presents the results of an analysis to assess the influence of cascade passage endwall flow on the airfoil suction surface mid-height boundary layer development in a turbine cascade. The effect of the endwall flow is interpreted as the generation of a cross flow and a cross flow velocity gradient in the airfoil boundary layer, which results in an extra term in the mass conservation equation. This extra term is shown to influence the boundary layer development along the mid-height of the airfoil suction surface through an increase in the boundary layer thickness and consequently an increase in the mid-height losses, and a decrease in the Reynolds shear stress, mixing length, skin friction, and Stanton number. An existing two-dimensional differential boundary layer prediction method, STAN-5, is modified to incorporate the above two effects.

Copyright © 1982 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In