Three-Dimensional Aerodynamic Characteristics of Oscillating Supersonic and Transonic Annular Cascades PUBLIC ACCESS

[+] Author Affiliations
M. Namba, A. Ishikawa

Kyushu University, Fukuoka, Japan

Paper No. 82-GT-126, pp. V001T01A052; 10 pages
  • ASME 1982 International Gas Turbine Conference and Exhibit
  • Volume 1: Turbomachinery
  • London, England, April 18–22, 1982
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7956-6
  • Copyright © 1982 by ASME


A lifting surface theory is developed for unsteady three-dimensional flow in rotating subsonic, transonic and supersonic annular cascades with fluctuating blade loadings. Application of a finite radial eigenfunction series approximation not only affords a clear insight into the three-dimensional structures of acoustic fields but also provides mathematical expressions advantageous to numerical work. The theory is applied to oscillating blades. Numerical examples are presented to demonstrate three-dimensional effects on aerodynamic characteristics. Three-dimensional effects in supersonic cascades are generally small and strip theory predicts local aerodynamic forces as well as total aerodynamic forces with good accuracy. In transonic flow, however, the strip theory approximation breaks down near the sonic span station and three-dimensional effects are of primary importance.

Copyright © 1982 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In