The Influence of Flow Rate on the Wake in a Centrifugal Impeller PUBLIC ACCESS

[+] Author Affiliations
M. W. Johnson

The University of Liverpool, Liverpool, UK

J. Moore

Virginia Polytechnic Institute, Blacksburg, VA

Paper No. 82-GT-45, pp. V001T01A018; 8 pages
  • ASME 1982 International Gas Turbine Conference and Exhibit
  • Volume 1: Turbomachinery
  • London, England, April 18–22, 1982
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7956-6
  • Copyright © 1982 by ASME


Three-dimensional flows and their influence on the stagnation pressure losses in a centrifugal compressor impeller have been studied. All 3 mutally perpendicular components of relative velocity and stagnation pressure on 5 cross-sectional planes, between the inlet and outlet of a 1 m dia shrouded impeller running at 500 rpm were measured. Comparisons were made between results for a flow rate corresponding to nearly zero incidence angle and two other flows, with increased and reduced flow rates. These detailed measurements show how the position of separation of the shroud boundary layer moved downstream and the wake’s size decreased, as the flow rate was increased. The wake’s location, at the outlet of the impeller, was also observed to move from the suction surface at the lowest flow rate, to the shroud at higher flow rates.

Copyright © 1982 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In