0

Development of the Single Crystal Alloys CM SX-2 and CM SX-3 for Advanced Technology Turbine Engines FREE

[+] Author Affiliations
K. Harris, G. L. Erickson, R. E. Schwer

Cannon-Muskegon Corporation, Muskegon, MI

Paper No. 83-GT-244, pp. V005T11A006; 11 pages
doi:10.1115/83-GT-244
From:
  • ASME 1983 International Gas Turbine Conference and Exhibit
  • Volume 5: Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; Process Industries
  • Phoenix, Arizona, USA, March 27–31, 1983
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7955-9
  • Copyright © 1983 by ASME

abstract

Two complementary single crystal alloys have been developed from the MAR-M-247 composition, with the objectives of providing high creep-rupture strength, excellent oxidation resistance, good castability, practical solution heat-treatment ranges, high incipient melting points, and stable microstructures. The alloys, CM SX-2 and CM SX-3, are turbine blade and vane alloys, with CM SX-3 showing improved coated oxidation and corrosion resistance. Foundry performance characteristics studied using ten different single crystal casting processes to produce both solid and complex cored, thin-wall turbine blade and vane components were: “freckling” sensitivity, spurious grain formation, microporosity, and alloy/ceramic core reactions. Practical solution heat-treatment ranges (difference between the γ′ solvus and the incipient melting temperatures) have been established and vary from 45–50°F for CM SX-3 and 50–55°F for CM SX-2 measured without prior homogenization treatments. Extensive machined-from-blade (MFB) mechanical property work is reported. Alloy stability investigations were undertaken using prior tested MFB stress-rupture specimens. Environmental evaluations using both bare and coated single crystal specimens, subjected to separate cyclic/dynamic oxidation, and corrosion testing in burner-type rigs are also reviewed. A new γ′ microstructure/heat-treatment technology has been found to be particularly applicable to CM SX-2 and CM SX-3 alloys, because of their low γ/γ′ mismatch and suitable γ′ chemistry. This technology further increases the creep-rupture capability of both alloys by 10–40°F, depending on test temperature.

Copyright © 1983 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In