EAGLE/DTA: A Life Cycle Cost Model for Damage Tolerance Assessment PUBLIC ACCESS

[+] Author Affiliations
Edward J. Reed

Pratt & Whitney Aircraft, West Palm Beach, FL

Paper No. 83-GT-76, pp. V002T02A004; 6 pages
  • ASME 1983 International Gas Turbine Conference and Exhibit
  • Volume 2: Aircraft Engine; Marine; Microturbines and Small Turbomachinery
  • Phoenix, Arizona, USA, March 27–31, 1983
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7952-8
  • Copyright © 1983 by ASME


The U.S. Air Force and Pratt & Whitney Aircraft are currently engaged in developing technology to minimize low-cycle fatigue maintenance requirements in future gas turbine engines. The Life Cycle Cost/Damage Tolerance Assessment (LCC/DTA) program is directed toward furthering technology development in two important areas that relate to the overall life cycle cost of advanced Air Force weapon systems: life cycle cost modeling and analysis, and damage tolerance design (DTD). A major goal of the LCC/DTA program is to establish hot-section disk design criteria specifying acceptable levels for life and maintenance actions based on minimum life cycle cost. This paper discusses the methodology developed to evaluate the weapon system LCC impact of designing to damage tolerance criteria.

Copyright © 1983 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In