Numerical Method for Fuel Distribution Downstream of the Emulsifying Channel Injector PUBLIC ACCESS

[+] Author Affiliations
Liu Bing, Wang Hong-Ji

Northwestern Polytechnical University, Xian, Peoples Republic of China

Paper No. 85-IGT-124, pp. V002T04A020; 7 pages
  • ASME 1985 Beijing International Gas Turbine Symposium and Exposition
  • Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels
  • Beijing, People’s Republic of China, September 1–7, 1985
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7943-6
  • Copyright © 1985 by ASME


Based upon experimental results, the physical processes of fuel-air mixture formation downstream of the emulsifying channel injector (ECI) have been studied and a calculation model for predicting fuel distribution downstream of ECI has been proposed in this paper. The two-dimensional differential equation of diffusion is solved by numerical method and the fuel distribution downstream of ECI is calculated. The calculated values are in good agreement with the experimental results.

Copyright © 1985 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In