A New Theory to Solve Turbulent Vortices in Flowing Fluids FREE

[+] Author Affiliations
Ge Gao, Huang Ning

Institute of Aeronautics & Astronautics, Beijing, China

Paper No. 85-IGT-120, pp. V001T02A044; 8 pages
  • ASME 1985 Beijing International Gas Turbine Symposium and Exposition
  • Volume 1: Aircraft Engine; Turbomachinery
  • Beijing, People’s Republic of China, September 1–7, 1985
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7942-9
  • Copyright © 1985 by ASME


Turbulent vortices occur everywhere in flowing fluids and possess the properties of dissipation and dispersion. A set of new control equations is presented featuring the interaction between dissipation and dispersion of turbulence. By analysis of instability the rate of turbulent energy production is established. Two 3rd order derivative momentum equations are derived, one for weak and the other for strong vorticity. By this new theory various turbulent flow problems can be solved such as: energy inversion in the vortex tail behind a bluff body, the coherent horseshoe vortices in a turbulent boundary layer, the delay in cascading down of turbulent energy through the spectrum, anisotropy of turbulence intensities, etc. Two computational examples are presented.

Copyright © 1985 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In