An Investigation of the Response of Temperature Sensing Probes to an Unsteady Flow Field PUBLIC ACCESS

[+] Author Affiliations
B. Agnew

University of Newcastle-upon-Tyne

R. L. Elder

Cranfield Institute of Technology

M. Terrel

Rolls-Royce Ltd., Derby

Paper No. 85-GT-223, pp. V001T03A061; 10 pages
  • ASME 1985 International Gas Turbine Conference and Exhibit
  • Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
  • Houston, Texas, USA, March 18–21, 1985
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7938-2
  • Copyright © 1985 by ASME


The response of temperature measuring devices to pulsating flow fields has been a source of concern to compressor designers. A conventional temperature sensing device is known to respond to the highly energetic wake flow leaving a rotor and due to the long thermal time constant of the probe a temperature lying between the hot wake temperature and the relatively cooler main stream temperature tends to be indicated. This indicated temperature can be in serious error if included in a calculation to define the energy flux.

This work is concerned with a theoretical and experimental examination of temperature sensor response to an unsteady pulsating flow typical of that occuring in a compressor.

Copyright © 1985 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In