Time-Split Inflow Boundary Treatment PUBLIC ACCESS

[+] Author Affiliations
Siu Shing Tong

General Electric Company, Schenectady, NY

Paper No. 85-GT-165, pp. V001T03A040; 9 pages
  • ASME 1985 International Gas Turbine Conference and Exhibit
  • Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
  • Houston, Texas, USA, March 18–21, 1985
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7938-2
  • Copyright © 1985 by ASME


This paper describes a new non-reflective inflow treatment for viscous and inviscid internal flow calculations. The method approximates the multi-dimensional governing equations at the inflow boundary in a series of one-dimensional split equations. This treatment allows the artificial inflow boundary to be brought in just in front of the leading edge, while allowing upstream running waves to penetrate without significant reflection. Calculation examples of two dimensional inviscid internal flows are presented. Extension of the method to three-dimensional problems is also discussed.

Copyright © 1985 by ASME
Topics: Inflow
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In