0

The F-16 Common Engine Bay FREE

[+] Author Affiliations
C. E. Porcher

Propulsion & Thermodynamics, Fort Worth, TX

Paper No. 85-GT-231, pp. V001T01A007; 8 pages
doi:10.1115/85-GT-231
From:
  • ASME 1985 International Gas Turbine Conference and Exhibit
  • Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
  • Houston, Texas, USA, March 18–21, 1985
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7938-2
  • Copyright © 1985 by ASME

abstract

In 1979 the United States Air Force elected under the Engine Model Derivative Program (EMDP) to explore derivative engine concepts by the General Electric Company and the Pratt and Whitney Aircraft Division of United Technology Corporation with the objective of improving engine durability and reducing engine ownership cost for future procurements of their first line fighter engines. Concurrently, General Dynamics was invited to develop the necessary airframe/engine interface definition to assure engine compatibility with the airplane requirements. This EMDP development culminated in 1981 with the Alternate Fighter Engine (AFE) competition with General Electric proposing the F110-GE-100 engine and Pratt and Whitney Aircraft proposing the F100-PW-220. Both engines were placed in Full Scale Development and both met the USAF objectives of 4000 TAC cycle life and improved engine cost and warranty for application to the F-15 and F-16 fighters. General Dynamics evolved the concept of the Common Engine Bay which has all aircraft interfaces compatible with either AFE engine and the current Pratt and Whitney Aircraft F100-PW-200 engine. The original F-16 nacelle design, with minor modification of the interfaces and engine mount structure, was adapted to permit full interchangeability for the F100-PW-200, F100-PW-220, or the F110-GE-100 engines. Design requirements were set to permit a common airplane with no break in the production line or aircraft model change and with appropriate simple kits to permit interchangeability of any of the three engines in the field at the organizational level. This manufacturing capability allows the USAF the flexibility to conduct subsequent competitive procurement of the engine.

Copyright © 1985 by ASME
Topics: Engines
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In