A Trade-Off Study of Rotor Tip Clearance Flow in a Turbine/Exhaust Diffuser System PUBLIC ACCESS

[+] Author Affiliations
Saeed Farokhi

The University of Kansas, Lawrence, KS

Paper No. 87-GT-229, pp. V001T01A084; 7 pages
  • ASME 1987 International Gas Turbine Conference and Exhibition
  • Volume 1: Turbomachinery
  • Anaheim, California, USA, May 31–June 4, 1987
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7923-8
  • Copyright © 1987 by ASME


In a modern gas turbine power plant, the axial exhaust diffuser accounts for up to 10% of the generator power. An unshrouded rotor, due to its highly energetic tip clearance flow, improves the pressure recovery characteristic of the exhaust diffuser, while the power production within the blading suffers a loss as a result of the tip leakage flow. In this paper, these conflicting trends are thermodynamically investigated and nondimensional expressions are derived which facilitate the task of a gas turbine system designer. Conservatively, 1% thermal efficiency gain results from elimination of the last rotor tip clearance flow. The corresponding increase in thermal efficiency of a modern gas turbine power plant due to enhanced diffuser pressure recovery is less than one percent.

Copyright © 1987 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In