Computation of the Jet-Wake Flow Structure in a Low Speed Centrifugal Impeller PUBLIC ACCESS

[+] Author Affiliations
B. L. Lapworth, R. L. Elder

Cranfield Institute of Technology, Cranfield, Bedford, UK

Paper No. 88-GT-217, pp. V001T01A076; 12 pages
  • ASME 1988 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 1: Turbomachinery
  • Amsterdam, The Netherlands, June 6–9, 1988
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7918-4
  • Copyright © 1988 by ASME


The low speed flow through the shrouded de-Havilland Ghost centrifugal impeller is computed using an incompressible elliptic calculation procedure. The three dimensional viscous flow equations are solved using the SIMPLE algorithm in an arbitrary generalised coordinate system. A non-staggered grid arrangement is implemented in which pressure oscillations are eliminated using an amended pressure correction scheme. Flow computations are performed at ‘nominal’ low speed design and above design flow rates, and (on the coarse grids used in the calculations) good agreement is obtained with the experimentally observed jet-wake structure of the flow.

Copyright © 1988 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In