Application of Low-Solidity Cascade Diffuser to Transonic Centrifugal Compressor PUBLIC ACCESS

[+] Author Affiliations
H. Hayami

Kyushu University, Kasuga, Japan

Y. Senoo

Miura Company, Ltd., Matsuyama, Japan

K. Utsunomiya

Mitsubishi Kasei, Ltd., Yokohama, Japan

Paper No. 89-GT-66, pp. V001T01A037; 6 pages
  • ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 1: Turbomachinery
  • Toronto, Ontario, Canada, June 4–8, 1989
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7913-9
  • Copyright © 1989 by ASME


Low-solidity circular cascades, conformally transformed from high-stagger linear cascades of double-circular-arc vanes with solidity 0.69, were used as a part of the diffuser system of a transonic centrifugal compressor. Performance test results were compared with data of the same compressor with a vaneless diffuser. Good compressor performance, a wider flow range as well as a higher pressure ratio and a higher efficiency, superior to those with a vaneless diffuser, where the flow range was limited by choke of the impeller, were demonstrated. The test circular cascade diffusers demonstrated a good pressure recovery over a wide range of flow angles, even when the inflow Mach number to the cascade was over unity.

Copyright © 1989 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In