0

Accelerated Computation of Viscous, Steady Incompressible Flows PUBLIC ACCESS

[+] Author Affiliations
Seungsoo Lee, George S. Dulikravich

The Pennsylvania State University, University Park, PA

Paper No. 89-GT-45, pp. V001T01A019; 9 pages
doi:10.1115/89-GT-45
From:
  • ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 1: Turbomachinery
  • Toronto, Ontario, Canada, June 4–8, 1989
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7913-9
  • Copyright © 1989 by ASME

abstract

Based on an artificial compressibility method, the explicit Runge-Kutta time stepping finite difference algorithm was applied to steady, incompressible, Navier-Stokes equations. A two-dimensional analysis computer code in a generalized curvilinear coordinate system was developed and its accuracy has been compared to known numerical solutions. The algorithm has been accelerated using our new Distributed Minimal Residual (DMR) method, which allows each equation in the system to advance in time with its own optimal speed. The effectiveness of the DMR method was examined for a number of test cases. The accelerated algorithm offers substantial savings of the computing time.

Copyright © 1989 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In