0

Turbine Tip and Shroud Heat Transfer PUBLIC ACCESS

[+] Author Affiliations
D. E. Metzger

Arizona State University, Tempe, AZ

M. G. Dunn

Calspun-UB Research Center, Buffalo, NY

C. Hah

General Electric Company, Schenectady, NY

Paper No. 90-GT-333, pp. V004T09A040; 7 pages
doi:10.1115/90-GT-333
From:
  • ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration
  • Brussels, Belgium, June 11–14, 1990
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7907-8
  • Copyright © 1990 by ASME

abstract

Unshrouded blades of axial turbine stages move in close proximity to the stationary outer seal, or shroud, of the turbine housing. The pressure difference between the concave and convex sides of the blade drives a leakage flow through the gap between the moving blade tip and adjacent wall. This clearance leakage flow and accompanying heat-transfer are of interest because of long obvious effects on aerodynamic performance and structural durability, but understanding of its nature and influences has been elusive. Previous studies indicate that the leakage through the gap is mainly a pressure-driven flow whose magnitude is related strongly to the airfoil pressure loading distribution and only weakly, if at all, to the relative motion between blade tip and shroud. A simple flow and heat-transfer model incorporating these features can be used to estimate both tip and shroud heat transfer provided that reasonable estimates of the clearance gap size and clearance leakage flow can be made. The present work uses a numerical computation of the leakage flow to link the model to a specific turbine geometry and operating point for which a unique set of measured local tip and shroud heat fluxes are available. The resulting comparisons between the model estimates and measured heat-transfer are good. The model should thus prove useful in the understanding and interpretation of future measurements, and should additionally prove useful for providing early design estimates of the levels of tip and shroud heat transfer that need to be compensated for by active turbine cooling.

Copyright © 1990 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In