Effect of Incidence on Wall Heating Rates and Aerodynamics on a Film Cooled Transonic Turbine Blade PUBLIC ACCESS

[+] Author Affiliations
Cengiz Camci

The Pennsylvania State University, University Park, PA

Tony Arts

The von Karman Institute for Fluid Dynamics, Rhode Saint Genese, Belgium

Paper No. 90-GT-046, pp. V004T09A013; 10 pages
  • ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration
  • Brussels, Belgium, June 11–14, 1990
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7907-8
  • Copyright © 1990 by ASME


This study investigates the influence of incidence on convective heat transfer to highly curved surfaces of a film cooled turbine rotor blade. A computational study of free stream inviscid aerodynamics without cooling at various incidences is followed by well documented measured heat transfer data sets. The heat transfer experiments are discussed for cases with and without film cooling, performed under realistic gas turbine flow conditions in the short duration heat transfer facility of the von Karman Institute for Fluid Dynamics. The precise location of the stagnation point and the iso-Mach number contours in the passage for each incidence (−10°, 0°, 10°, +10°) are presented for a nominal exit Mach number of 0.94. The free stream mass flow rate was kept constant for each experiment at different incidence levels. Three rows of compound angled discrete cooling holes are located near the leading edge in a shower-head configuration. Two rows of staggered discrete cooling holes are located on the suction side and a single row of cooling holes is located on the pressure side. The short duration measurements of quantitative wall heat fluxes on nearly isothermal blade surfaces both in the presence and absence of coolant ejection are presented. The study indicated that the change of the position of the stagnation point strongly altered the aerodynamic behaviour and convective heat transfer to the blade in approximately the first 30 % of both the pressure side and the suction side in the presence and absence of film cooling. The immediate vicinity of the stagnation point was not significantly affected by changing incidence without cooling. Transitional behaviour both on the suction surface and on the pressure surface was significantly influenced by the changes in approching flow direction. Flow separation associated with incidence variations was also observed. Extremely low levels of convective heat transfer coefficients were experienced near the regions where small separation bubbles are located.

Copyright © 1990 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In