Comparison of Inviscid Computations With Theory and Experiment in Vibrating Transonic Compressor Cascades PUBLIC ACCESS

[+] Author Affiliations
G. A. Gerolymos, E. Blin

Université Pierre & Marie Curie, Paris, France

H. Quiniou

Villaroche Center, Moissy-Cramayel, France

Paper No. 90-GT-373, pp. V001T01A108; 16 pages
  • ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 1: Turbomachinery
  • Brussels, Belgium, June 11–14, 1990
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7904-7
  • Copyright © 1990 by ASME


The prediction of unsteady flow in vibrating transonic cascades is essential in assessing the aeroelastic stability of fans and compressors. In the present work an existing computational code, based on the numerical integration of the unsteady Euler equations, in blade-to-blade surface formulation, is validated by comparison with available theoretical and experimental results. Comparison with the flat plate theory of Verdon is, globally, satisfactory. Nevertheless, the computational results do not exhibit any particular behaviour at acoustic resonance. The use of a 1-D nonreflecting boundary condition does not significantly alter the results. Comparison of the computational method with experimental data from started and unstarted supersonic flows, with strong shock waves, reveals that, notwithstanding the globally satisfactory performance of the method, viscous effects are prominent at the shock wave/boundary layer interaction regions, where boundary layer separation introduces a pressure harmonic phase shift, which is not presicted by inviscid methods.

Copyright © 1990 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In