0

Endwall Losses and Flow Unsteadiness in a Turbine Blade Cascade FREE

[+] Author Affiliations
L. Adjlout, S. L. Dixon

The University of Liverpool, Liverpool, England

Paper No. 90-GT-355, pp. V001T01A104; 7 pages
doi:10.1115/90-GT-355
From:
  • ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 1: Turbomachinery
  • Brussels, Belgium, June 11–14, 1990
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7904-7
  • Copyright © 1990 by ASME

abstract

The purpose of this paper is to describe an investigation of the flow within and downstream of a turbine blade cascade of high aspect ratio. A detailed experimental investigation into the changes in the endwall boundary layer in the cascade (100deg camber angle) and total pressure loss downstream of the cascade was carried out. Flow visualisation was used in order to obtain detailed photographs of the flow patterns on the endwall and for exhibiting the trailing edge vortices. Pressure measurements were carried out using a miniature cranked Kiel probe for three planes downstream of the cascade, with two levels of turbulence intensity of the free-stream. Pressure distribution on the blade were measured at three spanwise locations, namely 4%, 12%, and 50% of the full-span from the wall. Hot wire anenometry combined with a spectrum analyser program was used to determine the frequencies of the flow oscillations.

The change in turbulence level of the free stream has a significant influence on all three pressure distributions. The striking difference between two of the pressure distributions is in the aft half of the suction side where the distribution with the lower turbulence intensity has the larger lift. The oil flow visualisation reveals what appears to be two separation lines within the passage and are believed to originate from the horseshoe vortex. The pitchwise-averaged total pressure loss coefficient increases with the distance of the measurement plane downstream of the cascade blades. A substantial part of this loss increase close to the wall is caused by the high rate of shear of the new boundary layer on the endwall.

Copyright © 1990 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In