0

Aerothermal Boundary Layer Computation Including Strong Viscous-Inviscid Flow Interaction FREE

[+] Author Affiliations
P. Kulisa, F. Leboeuf

Laboratoire de Mécanique des Fluides et d’ Acoustique, Ecully, France

P. Klinger, J. Bernard

SNECMA, Moissy Cramayel, France

Paper No. 90-GT-223, pp. V001T01A071; 8 pages
doi:10.1115/90-GT-223
From:
  • ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 1: Turbomachinery
  • Brussels, Belgium, June 11–14, 1990
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7904-7
  • Copyright © 1990 by ASME

abstract

The high temperature level reached at the exit of combustion chambers of modern aircraft engines and the practical limitations of advanced materials, demand efficient cooling of turbine blades. Optimization of the cooling requires an accurate prediction of aerodynamic losses and heat transfer on turbine blades.

A new two-dimensional compressible, aerothermal boundary layer code has been developed. The formulation includes strong viscous-inviscid interaction, which enhances the stability properties of the code. The boundary layer equations associated with the energy equation are solved with an implicit Keller-box scheme. Viscous-inviscid flow coupling is performed by adding an interaction equation which has an elliptic character. The complete system of equations is solved by a multi-pass procedure. This technique contributes to the stabilization of the method and allows the computation of regions with strong adverse pressure gradients, separation bubbles and injections in case of film cooling.

Comparisons between experimental and theoretical results are provided. Flow characteristics including heat transfer were computed for several cases such as flat plates with strong pressure gradients, and turbine blade boundary layers. Good agreement between computation and experiment is observed, demonstrating the high accuracy and robustness of the code.

Copyright © 1990 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In