0

Secondary Flow and Loss Distribution in a Radial Compressor With Untwisted Backswept Vanes FREE

[+] Author Affiliations
G. Sipos

Technical University of Vienna, Austria

Paper No. 90-GT-161, pp. V001T01A057; 12 pages
doi:10.1115/90-GT-161
From:
  • ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 1: Turbomachinery
  • Brussels, Belgium, June 11–14, 1990
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7904-7
  • Copyright © 1990 by ASME

abstract

The unshrouded impeller and the vaneless diffuser of a single-stage radial compressor have been investigated at three flow rates. Three-dimensional velocities and pressures were measured at a tip speed of 84 m/s by an L2F-velocimeter, a slanted single hot-wire probe and piezoresistive pressure transducers. The measurements show that upstream the blading the averaged meridional inlet flow angle is about 54 degree and a periodical variation of the meridional flow angle of about 25 degree occurs near the casing wall. Further, an inlet vortex of clockwise direction appears and an initial whirl is induced. The specific work of the initial whirl corresponds to approximately 12% of the enthalpy losses between inlet pipe and diffuser outlet. In the beginning of the passage, the inlet vortex is suppressed and a solid body vortex of counterclockwise direction can be observed. At the outlet, a heavy flow deceleration at the blade suction side with subsequent separation can be seen. Increasing the flow rate decreases the wake and causes a more uniform loss distribution in this area. The measured secondary vortex flow and rotary stagnation pressure gradients are compared with test results from impellers with inducer. The incidence of the investigated impeller is greater than that of the impellers with inducer, but the wake-jet outlet flows are very similar. Inlet losses could be reduced by improving incidence angles by matching the blade angles to the inlet flow angles. Smaller blade angles at the shroud would reduce or eliminate separation at the leading edge, and the resulting reduction in low momentum fluid along the suction surface would help to avoid separation on that surface near the outlet.

Copyright © 1990 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In