Study of Internal Flows in a Mixed-Flow Pump Impeller at Various Tip Clearances Using 3D Viscous Flow Computations PUBLIC ACCESS

[+] Author Affiliations
Akira Goto

Ebara Research Co., Ltd., Honfujisawa, Fujisawa-shi, Japan

Paper No. 90-GT-036, pp. V001T01A013; 11 pages
  • ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 1: Turbomachinery
  • Brussels, Belgium, June 11–14, 1990
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7904-7
  • Copyright © 1990 by ASME


The complex three-dimensional flow fields in a mixed-flow pump impeller are investigated by applying the incompressible version of the Dawes’ 3D Navier-Stokes code. The applicability of the code is confirmed by comparison of computations with a variety of experimentally measured jet-wake flow patterns and overall performances at four different tip clearances including the shrouded case. Based on the computations, the interaction mechanism of secondary flows and the formation of jet-wake flow are discussed. In the case of large tip clearances, the reverse flow caused by tip leakage flow is considered to be the reason for the thickening of the casing boundary layer followed by the deterioration of the whole flow field.

Copyright © 1990 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In