0

Rotating Cavity With Axial Throughflow of Cooling Air: Flow Structure FREE

[+] Author Affiliations
P. R. Farthing, C. A. Long, J. M. Owen, J. R. Pincombe

University of Sussex, Brighton, England

Paper No. 90-GT-017, pp. V001T01A007; 13 pages
doi:10.1115/90-GT-017
From:
  • ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 1: Turbomachinery
  • Brussels, Belgium, June 11–14, 1990
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7904-7
  • Copyright © 1990 by ASME

abstract

A rotating cavity with an axial throughflow of cooling air is used to provide a simplified model for the flow that occurs between adjacent corotating compressor discs inside a gas-turbine engine. Flow visualization and laser-Doppler anemometry are employed to study the flow structure inside isothermal and heated rotating cavities for a wide range of axial-gap ratios. G. rotational. Reynolds numbers, Reφ, axial Reynolds numbers, Rez, and temperature distributions.

For the isothermal case, the superposed axial flow of air generates a powerful toroidal vortex inside cavities with large gap ratios (G > 0.400) and weak counter-rotating toroidal vortices for cavities with small gap ratios. Depending on the gap ratio and the Rossby number, ε (where ε ∝ Rez/Reφ), axisymmetric and nonaxisymmetric vortex breakdown can occur, but circulation inside the cavity becomes weaker as ε is reduced.

For the case where one or both discs of the cavity are heated, the flow becomes nonaxisymmetric: cold air enters the cavity in a “radial arm” on either side of which is a vortex. The cyclonic and anti-cyclonic circulations inside the two vortices are presumed to create the circumferential pressure gradient necessary for the air to enter the cavity (in the radial arm) and to leave (in Ekman layers on the discs). The core of fluid between the Ekman layers precesses with an angular speed close to that of the discs, and vortex breakdown appears to reduce the relative speed of precession.

Copyright © 1990 by ASME
Topics: Cooling , Air flow , Cavities
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In