Full Content is available to subscribers

Subscribe/Learn More  >

Flexural Behavior of Fiberglass Polymer Composite With and Without TEOS Electrospun Nanofibers

[+] Author Affiliations
Dattaji K. Shinde, Fatima T. White, Ajit D. Kelkar

North Carolina A&T State University, Greensboro, NC

Paper No. IMECE2014-38304, pp. V014T11A037; 7 pages
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 14: Emerging Technologies; Engineering Management, Safety, Ethics, Society, and Education; Materials: Genetics to Structures
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4963-7
  • Copyright © 2014 by ASME


High specific modulus and strength are one of the most desired properties of the materials for structural applications with applications in automotive, defense, aerospace etc. The major cause of failures in composite laminates is due to delaminations. These delaminations in composite laminates can occur due to various loadings such as, low velocity impact, fatigue etc. Conventional methods have like through the thickness stitching or Z-Pinning have limitations for improving flexural and interlaminar properties in woven composites, as while improving interlaminar properties, the in plane properties are affected. Non-woven Tetra Ethyl Orthosilicate (TEOS) electrospun nanofibers (ENFs) applied at interfacial regions offer an alternative option to traditional treatments to improve the flexural properties.

This study investigates the flexural behavior of fiberglass composite interleaved with TEOS ENFs. The chemically engineered TEOS ENFs were manufactured using electrospinning technique and then sintered. The glass fiber composites with and without interleaving of non-woven TEO ENFs mats were manufactured using a heated vacuum assisted resin transfer molding (H-VARTM). The flexural strength and modulus of nanomodified composite are increased by 14% and 8% respectively; and the strain energy absorption has significantly increased up to 93% with 2% wt. of TEOS ENFs that shows significant improvement in impact resistance.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In