0

Full Content is available to subscribers

Subscribe/Learn More  >

Biodegradable Magnesium Implant: In Vivo and In Vitro Convergence

[+] Author Affiliations
Yeoheung Yun, Yongseok Jang, Juan Wang, Jagannathan Sankar, Youngmi Koo, Leon White, Boyce Collins

North Carolina A&T State University, Greensboro, NC

Zhongyun Dong, Vesselin Shanov

University of Cincinati, Cincinnati, OH

Paper No. IMECE2014-39262, pp. V014T11A014; 6 pages
doi:10.1115/IMECE2014-39262
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 14: Emerging Technologies; Engineering Management, Safety, Ethics, Society, and Education; Materials: Genetics to Structures
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4963-7
  • Copyright © 2014 by ASME

abstract

In recent years, magnesium alloys have emerged as possible biodegradable implant material. A fundamental understanding of the nature of magnesium corrosion and the ability to control this process in vivo is critical to advancing the case for clinical use of magnesium based biomaterials. The biodegradation of magnesium is fundamentally linked to studies of its corrosion, which is dependent on the interfacing dynamics between the material and its environment. Thus, it is required to confirm what variable differentiate the corrosion behavior between in vitro and in vivo before optimizing and standardizing of in vitro test. This study was conducted to understand the biodegradation behavior of commercial AZ31 and Mg-Zn-Ca alloys with plasma electrolyte oxidation (PEO) under various biological environments using in vivo and in vitro testing methods mimicking in vivo physiological environment. This study is focused on the effect of Zn element concentration and PEO coating for magnesium alloys, and the correlation between the in vivo and in vitro in terms of corrosion rate, types of corrosion and corrosion product formation.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In