0

Full Content is available to subscribers

Subscribe/Learn More  >

Static Analysis of Advanced Composites for the Optimal Design of an Experimental Lightweight Solar Vehicle Suspension System

[+] Author Affiliations
Warren S. Hurter, Nickey Janse Van Rensburg, Daniel M. Madyira, Gert Adriaan Oosthuizen

University of Johannesburg, Gauteng, South Africa

Paper No. IMECE2014-40042, pp. V014T11A012; 6 pages
doi:10.1115/IMECE2014-40042
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 14: Emerging Technologies; Engineering Management, Safety, Ethics, Society, and Education; Materials: Genetics to Structures
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4963-7
  • Copyright © 2014 by ASME

abstract

To create an energy efficient vehicle there are a number of aspects that need to be optimized, namely; the drive train of the vehicle and energy source, aerodynamics and weight. Focusing on weight reduction, while still maintaining the desired performance and structural strength, many manufacturers are turning to advanced composites due to their superior strength to weight characteristics. Solar car racing provides a research platform that drives this innovation through technology development and efficiency. A lightweight vehicle suspension system design is being presented, together with an introduction into future testing. A suspension system is made up of a number of critical components which are dynamically loaded during standard operation due to undulating forces imposed by the road surface. Unidirectional cross-wound carbon fiber tubing is used for suspension and steering arms. The tubing is interfaced with small steel inserts and pivoting arm tie rod ends. Concerns within the design are the adhesive bonding of the carbon tubing to the steel inserts, and what type of tensile loading the interface can withstand. Due to forces imposed on the system during cornering and shock loading the components are required to withstand a minimum of 1.2 times the weight of the overall vehicle, i.e. 258 kg. Tensile test results show that the mechanical properties of the adhesive joints rely somewhat on the surface characteristics and bond preparation. The target load of 258 kg was successfully obtained under static loading for two types of sample sets. The first based on the standard for describing the lap shear strength of adhesively bonded carbon fiber to aluminum, and the second based on the working component itself.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In