0

Full Content is available to subscribers

Subscribe/Learn More  >

Finite Element Modeling of Tire With Validation Using Tensile and Frequency Response Testing

[+] Author Affiliations
Jennifer M. Bastiaan, Amir Khajepour

University of Waterloo, Waterloo, ON, Canada

Paper No. IMECE2014-38286, pp. V012T15A016; 13 pages
doi:10.1115/IMECE2014-38286
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 12: Transportation Systems
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4961-3
  • Copyright © 2014 by ASME

abstract

A physical testing program is performed in support of finite element model creation for a 50-series passenger car tire. ABAQUS finite element analysis software is used along with its standard material models. Uniaxial tension testing of tire samples cut from the tread composite, tread rubber and sidewall composite is performed in order to obtain material properties. Hyper-elastic material coefficients for tread rubber are fit using uniaxial tension test data. Results show that the Arruda-Boyce hyper-elastic material model fits the test data well and it predicts reasonable overall behavior in uniaxial tension and uniaxial compression. Most other hyperelastic material models are found to predict unrealistic behavior in uniaxial compression for the tire samples, especially in the 0 to 20% compressive strain range.

Frequency response testing of two inflated passenger car tires of different sizes, makes and models is also performed to assist in defining the viscoelastic material model for tread rubber. Test results show that tire modal damping is in the 2 to 4% range for most modes below 200 Hz, and the response curves, modal density and modal damping are remarkably similar for the two tires tested. The tire finite element model with updated material properties is simulated for nine combinations of air inflation pressure and vertical load in order to calculate static loaded radius. The analysis results are compared with physical test results and the analysis results are found to deviate at most by 3% compared to the tests.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In