0

Full Content is available to subscribers

Subscribe/Learn More  >

Design Specifications for Biaxial Navigation-Grade MEMS Accelerometers

[+] Author Affiliations
Xiaowei Shan, Ting Zou, Jorge Angeles

McGill University, Montreal, QC, Canada

James Richard Forbes

University of Michigan, Ann Arbor, MI

Paper No. IMECE2014-37280, pp. V010T13A058; 9 pages
doi:10.1115/IMECE2014-37280
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 10: Micro- and Nano-Systems Engineering and Packaging
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4959-0
  • Copyright © 2014 by ASME

abstract

The focus of this paper is the design of a biaxial MEMS accelerometer for navigation applications. First, a survey is conducted to outline the commercial landscape of navigation-grade and MEMS accelerometers. The survey shows a potential market for navigation-grade accelerometers at the MEMS scale. Based on the specifications for navigation applications, the design targets are derived for the proposed biaxial MEMS accelerometers, including the common concerns of natural frequency ratios and bandwidth, as well as the important parameters for MEMS devices, such as hinge width, proof-mass size and mobility range. In light of the design targets, the ideal frequency matrix of the biaxial accelerometer system is derived based on the concept of generalized spring, in connection with the design targets. The stiffness values required are estimated herein. For further structural optimization, the parametric entries of the frequency-ratio matrix act as the objectives to be maximized for the lowest off-axis sensitivity of the proposed accelerometer. A suitable architecture for MEMS biaxial accelerometers is proposed thereafter. This architecture not only provides high compliance and structural isotropy for the in-plane translation, but also allows for direct measurement of the proof-mass motion. The proposed architecture is then optimized for the highest frequency ratio between the non-sensitive and sensitive axes, with regard to the design parameters and constraints. The optimization results of the proposed accelerometer demonstrate navigation-grade mechanical performance.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In