Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Modeling of Braided Composites Using Energy Method

[+] Author Affiliations
Xiuli Shen, Longdong Gong

Beijing University of Aeronautics and Astronautics, Beijing, China

Paper No. IMECE2014-39619, pp. V009T12A062; 6 pages
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4958-3
  • Copyright © 2014 by ASME


Based on the braiding process and force analysis of yarn, a mesoscopic numerical modeling approach was established, which divided the modeling process as follows: establishing the control points according to the braiding process, establishing the fixed points during jamming, adjusting the control points after jamming, changing the position of fiber bundle due to the fiber bundle intertwined each other and establishing the fiber bundle trajectory according to the minimum strain energy. In the process of adjusting the intertwined fiber bundle trajectories, the fiber bundle trajectory was scattered. Using extrapolation adjustment method, discrete points of fiber bundle trajectory intertwined were adjusted in turn from the control points to the fixed points. Adjusted discrete points were equivalent at the corresponding location points of the corresponding trajectory, and at the same time, there was non-interference between the fiber bundle trajectories. Using this method, fiber bundle trajectory and cross section of the models of 2-D woven and 3-D four-directional braided composite materials were established, compared with the experiment result, which were consistent with the electronic microscope scan images and calculated woven structure size was in agreement with the measured data. The maximum relative calculation error of braiding bitch of 3-D four-directional braided structure was about 5%, especially braiding angle was 21° or so, the relative calculation error was below 2%. The maximum relative calculation error of surface braiding angle of 3-D four-directional braided structure was about 4%, especially braiding angle was 21° or so, the relative calculation error was below 2.4%. This modeling approach was fundamental for further analysis of the micromechanical strength and life of braided composites, which was applied to aero-engine hot section.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In