0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental and Numerical Analysis on the Buckling Behavior of Functionally Graded Cellular Media With Extension-Capable C1 Higher Order Plate Theory

[+] Author Affiliations
Farooq Al Jahwari, Hani E. Naguib

University of Toronto, Toronto, ON, Canada

Paper No. IMECE2014-39090, pp. V009T12A053; 8 pages
doi:10.1115/IMECE2014-39090
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4958-3
  • Copyright © 2014 by ASME

abstract

Polymeric cellular materials were primarily developed as means to reduce density of solid polymers and thus saving cost for applications where mechanical strength is not required like the packaging industry. Nevertheless, functionally graded cellular materials showed an attractive mechanical behavior in experimental studies. The fatigue life of porous polycarbonate (PC) with above 90% relative density is reported to be as much as four times that of a solid PC, and greater impact strength with relative density over 60%. The focus of this paper is on fabricating bio-polymeric-based functionally graded porous material with polylactic acid (PLA) and analyze the buckling behavior of their plate-like structures. The analysis includes numerical modeling supported with experimental findings. The modeling is carried out with a higher order shear deformation plate theory (HSDT) accounting for extension in the transverse direction. The proposed HSDT satisfies the constraint on the consistency of transverse shear strain energy a priori in addition to the traction conditions on plate surfaces. Few theories in the area satisfy both conditions. Finite element is used to implement the HSDT with C1 continuity using conforming elements. The through-thickness varying properties are homogenized at planar-level with the generalized self-consistent scheme. The graded cellular structure is manufactured to vary through the plate thickness while being uniform on-average for the other two planar dimensions. Constrained foaming process is adopted to control the pores’ size and structure through the plate thickness.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In