0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Characterization of IM7/8552-1 Carbon-Epoxy Composites

[+] Author Affiliations
Messiha T. Saad

Washington State University Tri-Cities, Richland, WA

Sandi G. Miller

NASA – Glenn Research Center, Cleveland, OH

Torrence Marunda

North Carolina A&T State University, Greensboro, NC

Paper No. IMECE2014-40030, pp. V08BT10A091; 8 pages
doi:10.1115/IMECE2014-40030
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 8B: Heat Transfer and Thermal Engineering
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4956-9
  • Copyright © 2014 by ASME

abstract

Thermal properties of composite materials such as, thermal conductivity, diffusivity, and specific heat are very important in engineering design process and analysis of aerospace vehicles as well as space systems. These properties are also important in power generation, transportation, and energy storage devices including fuel cells. Thermal conductivity is the property that determines the working temperature levels of the material; it plays a critical role in the performance of materials in high temperature applications, and it is an important parameter in problems involving heat transfer and thermal structures.

The objective of this paper is to develop a thermal properties data base for the carbon fiber-epoxy (IM7/8552-1) composite. The IM7 carbon fiber is a continuous, high performance, intermediate modulus, PAN based fiber. This fiber has been surface treated and can be sized to improve its interlaminar shear properties, handling characteristics, and structural properties. The 8552 is a high performance tough epoxy matrix for use in primary aerospace structures. It exhibits good impact resistance and damage tolerance for a wide range of applications. The IM7/8552-1 is an amine cured unidirectional prepreg. The manufacturer recommended cure cycle for this material was followed, which includes consolidation under vacuum and autoclave pressure. The composite has a service temperature up to 121°C (250°F).

The thermal properties of IM7/8552-1 carbon-epoxy have been investigated using experimental methods. The flash method was used to measure the thermal diffusivity of the composite. This method is based on the American Society for Testing and Materials standard, ASTM E1461. In addition, the Differential Scanning Calorimeter was used in accordance with the ASTM E1269 standard to measure the specific heat. The measured thermal diffusivity, specific heat, and density data were used to compute the thermal conductivity of the IM7/8552-1 carbon-epoxy composite.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In