0

Full Content is available to subscribers

Subscribe/Learn More  >

Mode-Decay Molecular Dynamics for Frequency-Dependent Phonon Scattering Rates

[+] Author Affiliations
M. D. Gerboth, D. G. Walker

Vanderbilt University, Nashville, TN

Paper No. IMECE2014-38914, pp. V08BT10A088; 4 pages
doi:10.1115/IMECE2014-38914
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 8B: Heat Transfer and Thermal Engineering
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4956-9
  • Copyright © 2014 by ASME

abstract

The thermal conductivity of crystalline materials can be determined in a statistical mechanical framework as long as phonon relaxation rates are known. Unfortunately, these quantities are difficult if not impossible to measure directly, and attempts to deduce these quantities yield gross averages not energy dependent relationships. Consequently, researchers often rely on heuristic models such as Holland’s suite of scattering rates for various phonon modes. A new molecular dynamics method was developed to estimate mode-dependent scattering rates by tracking the decay of an initially imposed standing wave. The wave vector is systematically changed and the corresponding decay is collected. Ultimately, the the thermal conductivity can be reconstructed using a Landauer formalism. The phonon scattering rates of a LJ crystal are calculated using this method. The standing wave decay approach allows scattering rates to be probed more directly than wave packet simulations, which are often used to obtain transmission coefficients.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In