0

Full Content is available to subscribers

Subscribe/Learn More  >

Optimization of Data Center Cooling Efficiency Using Reduced Order Flow Modeling Within a Flow Network Modeling Approach

[+] Author Affiliations
K. Fouladi, A. P. Wemhoff, L. Silva-Llanca, A. Ortega

Villanova University, Villanova, PA

Paper No. IMECE2014-39558, pp. V08BT10A082; 11 pages
doi:10.1115/IMECE2014-39558
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 8B: Heat Transfer and Thermal Engineering
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4956-9
  • Copyright © 2014 by ASME

abstract

Much of the energy use by data centers is attributed to the energy needed to cool the data centers. Thus, improving the cooling efficiency and thermal management of data centers can translate to direct and significant economic benefits. However, data centers are complex systems containing a significant number of components or sub-systems (e.g., servers, fans, pumps, and heat exchangers) that must be considered in any synergistic data center thermal efficiency optimization effort. The Villanova Thermodynamic Analysis of Systems (VTAS) is a flow network tool for performance prediction and design optimization of data centers. VTAS models the thermodynamics, fluid mechanics, and heat transfer inherent to an entire data center system, including contributions by individual servers, the data center airspace, and the HVAC components. VTAS can be employed to identify the optimal cooling strategy among various alternatives by computing the exergy destruction of the overall data center system and the various components in the system for each alternative. Exergy or “available energy” has been used to identify components and wasteful practices that contribute significantly in cooling inefficiency of data centers including room air recirculation — premature mixing of hot and cold air streams in a data center. Flow network models are inadequate in accurately predicting the magnitude of airflow exergy destruction due to simplifying assumptions and the three-dimensional nature of the flow pattern in the room. On the other hand, CFD simulations are time consuming, making them impractical for iterative-based design optimization approaches. In this paper we demonstrate a hybrid strategy, in which a proper orthogonal decomposition (POD) based airflow modeling approach developed from CFD simulation data is implemented in VTAS for predicting the room airflow exergy destruction. The reduced order POD tool in VTAS provides higher accuracy than 1-D flow network models and is computationally more efficient than 3-D CFD simulations. The present VTAS – POD tool has been applied to a data center cell to illustrate the use of exergy destruction minimization as an objective function for data center thermal efficiency optimization.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In