0

Full Content is available to subscribers

Subscribe/Learn More  >

Improved Non-Equilibrium Film Method for the Design of High-Temperature-Glide, Mini- and Microchannel Condensers

[+] Author Affiliations
Brian M. Fronk, Srinivas Garimella

Georgia Institute of Technology, Atlanta, GA

Paper No. IMECE2014-38543, pp. V08BT10A066; 11 pages
doi:10.1115/IMECE2014-38543
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 8B: Heat Transfer and Thermal Engineering
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4956-9
  • Copyright © 2014 by ASME

abstract

High-temperature-glide (i.e., large difference in dew and bubble point temperature) zeotropic mixtures such as ammonia/water have the potential to improve efficiency as new working fluids in advanced energy cycles for heating, cooling and power. Furthermore, the high heat capacity of ammonia/water mixtures makes them particularly attractive for use in compact mini- and microchannel devices. The non-isothermal condensation process of zeotropic mixtures leads to coupled heat and mass transfer resistances in each phase, which are not accounted for by single-component in-tube condensation modeling and correlation techniques. Previous attempts to design zeotropic condensers have relied on use of non-equilibrium film theory or mixture resistance correction factors. The film theory models have been developed with many simplifying assumptions including annular flow, negligible condensate and vapor sensible heat loads, and/or laminar condensate film, while the correction factor approaches do not directly consider mass transfer resistances. In the present study of high-temperature-glide mixtures in small channels, these assumptions are relaxed, and a new design method for mini- and microchannel zeotropic condensers is introduced. The approach is validated with experiments conducted for a range of tube diameters (0.98 < D < 2.16 mm), mass fluxes (50 < G < 200 kg m−2 s−1) and mass fractions of ammonia (0.80 < xbulk < 0.96). The results can be used in the development of compact, highly efficient heat and mass transfer devices.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In