0

Full Content is available to subscribers

Subscribe/Learn More  >

Study on Nucleate Boiling Heat Transfer by Measuring Detailed Surface Temperature Distribution and Variation With Infrared Radiation Camera

[+] Author Affiliations
Kazuki Takahashi, Yasuo Koizumi

Shinshu University, Ueda, Nagano, Japan

Paper No. IMECE2014-37448, pp. V08BT10A060; 9 pages
doi:10.1115/IMECE2014-37448
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 8B: Heat Transfer and Thermal Engineering
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4956-9
  • Copyright © 2014 by ASME

abstract

Pool boiling heat transfer experiments were performed for water at 101 kPa to examine elementary process of nucleate pool boiling. The heat transfer surface was made from a copper printed circuit board. The size of the heat transfer surface was 10 mm × 10 mm. Direct current was supplied to the heat transfer surface to heat it up. The Bakelite plate of the backside of the copper layer was taken off at the center portion of the heat transfer surface. The test vessel was a closed 200-mm cube container made of duralumin. It has transparent view windows on opposing side walls made of a Polycarbonate plate to observe a boiling state. Heat transfer surface was placed at the bottom of the test vessel. Distilled water was used for the experiments. The instantaneous variation of the backside temperature of the heat transfer surface was measured with an infrared radiation camera. Bubble behavior was recorded with a high speed video camera. The time and the space resolution of the infrared radiation cameras used in present experiments were 60 Hz and 0.1 mm × 0.1 mm, and 120 Hz and 0.315 mm × 0.315 mm, respectively. When the heat flux was increased, the instantaneous surface temperature variation explain the pattern. In the isolated bubble region, surface temperature was uniform during waiting time. When boiling bubble generation started, a large dip in the surface temperature was formed under the bubble. After the bubble left from the heat transfer surface, the surface temperature returned to former uniform temperature distribution. Surface temperature was not affected by the bubble generation beyond 1.8 mm from the center of the bubble. In the intermediate and high heat flux region, the variation of surface temperature and heat flux were small. Rather the heat flux variation range was close to that at the isolated boiling region.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In