0

Full Content is available to subscribers

Subscribe/Learn More  >

A Systematic Study of Pool Boiling Heat Transfer on Multiscale Structured Surfaces

[+] Author Affiliations
Russell P. Rioux, Eric C. Nolan, Calvin H. Li

Villanova University, Villanova, PA

Paper No. IMECE2014-36236, pp. V08BT10A040; 12 pages
doi:10.1115/IMECE2014-36236
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 8B: Heat Transfer and Thermal Engineering
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4956-9
  • Copyright © 2014 by ASME

abstract

A study has been conducted to examine the effects of macroscale, microscale, and nanoscale surface modifications in water pool boiling heat transfer and to determine the effects of combining the multiple scales. Nanostructured surfaces were created by acid etching, while microscale and macroscale surfaces were manufactured through a sintering process. Six structures were studied as individual and/or collectively integrated surfaces: polished plain, flat nanostructured, flat porous, modulated porous, nanostructured flat porous, and nanostructured modulated porous. Boiling performance was measured in terms of critical heat flux (CHF) and heat transfer coefficient (HTC). Both HTC and CHF have been greatly improved on all modified surfaces compared to the polished baseline. The CHF and HTC of the hybrid multiscale modulated porous surface have achieved the most significant improvements of 350% and 200% over the polished plain surface, respectively. Nanoscale, microscale, and macroscale integrated surfaces have been proven to have the most significant improvements on HTC and CHF. Experimental results were compared to the predictions of a variety of theoretical models with an attempt to evaluate both microscale and nanoscale models. It was concluded that models for both microscale and nanoscale structured surfaces needed to be further developed to be able to have good quantitative predictions of CHFs on structured surfaces.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In