0

Full Content is available to subscribers

Subscribe/Learn More  >

NOx Reduction in Partially Premixed Flames by Flue Gas Recirculation

[+] Author Affiliations
Yaroslav Chudnovsky, Serguei Zelepouga, John Wagner, Vitaly Gnatenko

Gas Technology Institute, Des Plaines, IL

Alexei Saveliev

North Carolina State University, Raleigh, NC

Paper No. IMECE2014-39367, pp. V08BT10A031; 4 pages
doi:10.1115/IMECE2014-39367
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 8B: Heat Transfer and Thermal Engineering
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4956-9
  • Copyright © 2014 by ASME

abstract

The authors are currently investigating new technical (both design and operation) approach, which is expected to enable the improvement of the performance of partially premixed type burners without jeopardizing the simplicity, cost, and reliability that this type of burners are well known for. The improvements include significant reduction of the NOx emission without substantial redesign of the combustion system. The results of the experimental investigation of burner operation and design improvements are to be presented and further discussed at the podium.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In