Full Content is available to subscribers

Subscribe/Learn More  >

A Ceramic-Membrane-Based Methane Combustion Reactor With Tailored Function of Simultaneous Separation of Carbon Dioxide From Nitrogen

[+] Author Affiliations
Ryan Falkenstein-Smith, Kang Wang, Pingying Zeng, Jeongmin Ahn

Syracuse University, Syracuse, NY

Paper No. IMECE2014-38283, pp. V08BT10A029; 6 pages
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 8B: Heat Transfer and Thermal Engineering
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4956-9
  • Copyright © 2014 by ASME


Today, industry has become more dependent on natural gases and combustion processes, creating a tremendous pressure to reduce their emissions. Although the current methods such as chemical looping combustion (CLC) and pure oxygen combustion have several advantages, there are still many limitations. A ceramic membrane based methane combustion reactor is an environmentally friendly technique for heat and power generation. This work investigates the performance of a perovskite-type SrSc0.1Co0.9O3-δ (SSC) membrane reactor for the catalytic combustion of methane. For this purpose, the mixed ionic and electronic conducting SSC oxygen-permeable planar membrane was prepared by a dry-pressing technique, and the SSC powder catalyst was spray coated on the permeation side of the membrane. Then, the prepared SSC membrane with the catalyst was used to perform the catalytic combustion of methane. The oxygen permeability of the membrane reactor was studied. Also, the methane conversion rates and CO2 selectivity at various test conditions were reported.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In