0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study of a Direct Chill Slab Caster Fitted With a Porous Filter for Aluminum Alloy AA-2024

[+] Author Affiliations
Mainul Hasan

McGill University, Montreal, QC, Canada

Paper No. IMECE2014-36748, pp. V08BT10A015; 12 pages
doi:10.1115/IMECE2014-36748
From:
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 8B: Heat Transfer and Thermal Engineering
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4956-9
  • Copyright © 2014 by ASME

abstract

The present study is undertaken to model an industrial-sized vertical Direct Chill (DC) slab caster fitted with a porous filter near the melt entry region. The modeled alloy is a high strength aluminum alloy AA-2024 which is extensively used by the aerospace industry. The model has incorporated the 3-D turbulent aspect of the melt flow and heat transfer in the liquid sump and the mushy region solidification aspect of this long solidification range (136° C) alloy. The verified 3-D turbulent CFD in-house code is used to study the effects of various parameters of this casting process in order to gain some fundamental understanding of the melt flow and solidification behavior of the process. The studied caster consists of a popular ‘hot-top’ mold fitted with a porous filter above which molten aluminum alloy is delivered with a constant flow-rate across the entire hot-top. Because of two-fold symmetry, a quarter of the domain of the caster is modeled to save computational costs and time. A staggered control volume based finite-difference scheme is used to solve the non-dimensional modeled equations and the associated boundary conditions. The turbulent aspect of the flow in the porous filter is modeled using the latest suggested version of the Brinkman-Forcheimer extended form of Darcy equation for a porous media. The turbulent melt flow and solidification heat transfer in the clear fluid region are modeled using a low Reynolds number version of the k–ε eddy viscosity model. Computed results for the steady-state phase of the casting process are presented for four casting speeds, varying from 100 to 220 mm/min, for three metal-mold contact regions, varying from 20 to 50 mm and for three metal-mold convective heat transfer boundary conditions, varying from 1.0 to 4.0 kW/m2K and all for a fixed inlet melt superheat of 64° C. The permeability of the filter is also varied to ascertain its influence on the predicted results. Computed results of the velocity and temperature profiles, the sump depth and mushy region at the centre of the caster as well as the solidification shell thickness at the exit of the mold are provided and discussed. The present work can provide some useful guidelines in designing and optimizing a vertical DC slab caster for producing good quality casts for the common aluminum alloy AA-2024.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In