Full Content is available to subscribers

Subscribe/Learn More  >

Computational Study of Savonius Wind Turbines

[+] Author Affiliations
Majid Rashidi, Asmita Chinchore

Cleveland State University, Cleveland, OH

Jaikrishnan R. Kadambi

Case Western Reserve University, Cleveland, OH

Paper No. IMECE2014-39595, pp. V007T09A101; 7 pages
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering Systems and Technologies
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4954-5
  • Copyright © 2014 by ASME


This work presents a computational study of a two-blade and a three-blade Savonius vertical axis wind turbines. The two-blade turbine was considered to be oriented at 0, 45, 90, and 135 degrees in reference to the direction of the prevailing wind. For the three-blade turbine, the orientations taken into account were 0, 30, 60, and 90 degrees in reference to the direction of the prevailing wind. The basic aim of this work was to study how the two designs are different from each other in terms of the forces acting on their blades. The computational simulations considered the turbines to be subjected to constant wind velocities of 5, 10, 20, and 30 m/s. Computational Fluid Dynamics (CFD) analyses were conducted for every case to find out the forces acting on the turbine blades for each orientation. All cases were run using “transition-SST” flow model and the turbine blades were meshed using ‘Quadrilateral Pave’ meshing scheme. Maximum change in pressure on the turbine blade occurs when the two-blade turbine is perpendicular to direction of the prevailing wind, i.e. at 90 degree. On the other hand, when three-blade turbine is at 60 degree orientation, maximum change is pressure occurs on the turbine blade. For the dimensions selected in this study (each blade having a radius of 0.3 m and height of 0.6 m) the maximum net forces on the two-blade turbine was calculated to be 298 N, while this value was 210 N on the three-blade turbine.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In