Full Content is available to subscribers

Subscribe/Learn More  >

A Comparison of Shadowgraphy and X-Ray Computed Tomography in Liquid Spray Analysis

[+] Author Affiliations
Zachary Lee, Daniel Eichner, Jonathan Tennis, Matthew Ryan, Tyler Sowell, Michael Benson, Bret Van Poppel, Thomas Nelson

United States Military Academy, West Point, NY

Pablo Vasquez Guzman, Rebecca Fahrig, John Eaton

Stanford University, Stanford, CA

Matthew S. Kurman, Chol-Bum M. Kweon

U.S. Army Research Laboratory, Aberdeen Proving Ground, MD

Paper No. IMECE2014-38770, pp. V007T09A095; 12 pages
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering Systems and Technologies
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4954-5
  • Copyright © 2014 by ASME


This work examines and compares two proven techniques for assessing key characteristics of liquid sprays for combustion applications: shadowgraphy and time-averaged X-ray computed tomography (CT). Atomization has key applications in combustion as it can improve fuel efficiency, increase heat release, and decrease pollutant emissions. To improve the design of fuel injection nozzles, the ability to conduct accurate analyses of sprays is crucial. Key characteristics of the liquid spray, such as mean particle diameter, spray-cone angle, mass distribution, and penetration length give insight into the effectiveness of a nozzle. Shadowgraphy is a relatively inexpensive method that produces a two-dimensional, instantaneous image of the spray particles or spray called a shadowgram. Shadowgrams can be used for analyzing mean particle size, spray-cone angle, and location of breakup regions. X-ray CT measures the time-averaged X-ray absorption of two-dimensional projection images of spray to produce a three-dimensional reconstruction of the spray. X-ray CT can provide valuable insight into the symmetry and mass distribution of a spray; however, X-ray absorption diminishes rapidly with increased distance from nozzles, thereby limiting analysis to the regions near the nozzle. A detailed comparison of the overall effectiveness and insights yielded by the two methods illustrates the unique uses, benefits, and shortcomings of each method. The results confirm that X-ray CT scanning proves more effective in the dense, near-nozzle spray region. Shadowgraphy effectively complements the X-ray CT analysis through particle analysis. It also allows for relatively simple spray cone analysis, though it cannot provide quantitative mass distribution analysis.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In