Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Model of FGD Unit in Power Plant

[+] Author Affiliations
Armin Silaen, Bin Wu, Chenn Q. Zhou

Purdue University Calumet, Hammond, IN

William Breen

Northern Indiana Public Service Company (NIPSCO), LaPorte, IN

Paper No. IMECE2014-37720, pp. V007T09A083; 7 pages
  • ASME 2014 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering Systems and Technologies
  • Montreal, Quebec, Canada, November 14–20, 2014
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4954-5
  • Copyright © 2014 by ASME


Numerical model technique was employed to model the reactive multiphase flow inside a flue gas desulfurization (FGD) unit. The model was divided into two parts: (a) the absorption tower model and (b) the reaction tank model. Eulerian-Lagrangian approach was employed in the absorption tower model. Discrete phase model was used to model the limestone slurry droplets and the SO2 absorption by the limestone slurry was included in the model. Eulerian-Eulerian approach was employed in the reaction tank model where the oxidation of the slurry to form gypsum was modeled. The absorption tower model and the reaction tank model are coupled. Parametric studies were performed to investigate the SO2 removal efficiency of the unit.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In